Reduction of power losses in voltage/current source inverter by using space vector pulse width modulation (SVPWM) Method

نویسنده

  • P. Prashanth
چکیده

The main objective of this paper is a space vector pulse width amplitude modulation (SVPWAM) method for a buck–boost voltage/current source inverter. For a voltage source inverter, the switching loss is reduced by 87%, compared to a conventional sinusoidal pulse width modulation (SPWM) method. For a current source inverter, the switching loss is reduced by 60%. In both cases, the power density is increased by a factor of 2 to 3. In addition, it is also verified that the output harmonic distortions of SVPWAM is lower than SPWM, by only using one-third switching frequency of the latter one. As a result, it is feasible to use SVPWAM to make the buck–boost inverter suitable for applications that require high efficiency, high power density, high temperature, and low cost. Such applications include electric vehicle motor drive or engine starter/alternator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space Vector Pulse Width Modulation with Reduced Common Mode Voltage and Current Losses for Six-Phase Induction Motor Drive with Three-Level Inverter

Common-mode voltage (CMV) generated by the inverter causes motor bearing failures in multiphase drives.On the other hand, presence of undesired z-component currents in six-phase induction machine (SPIM) leads to extra current losses and have to be considered in pulse width modulation (PWM) techniques. In this paper, it is shown that the presence of z-component currents and CMV in six phase driv...

متن کامل

Design and Performance Analysis of 7-Level Diode Clamped Multilevel Inverter Using Modified Space Vector Pulse Width Modulation Techniques

In this paper, a 7-level Diode Clamped Multilevel Inverter (DCMLI) is simulated with three different carrier PWM techniques. Here, Carrier based Sinusoidal Pulse Width Modulation (SPWM), Third Harmonic Injected Pulse Width Modulation (THIPWM) and Modified Carrier-Based Space Vector Pulse Width Modulation (SVPWM) are used as modulation strategies. These modulation strategies include Phase Dispos...

متن کامل

Space Vector Pulse Width Modulation Applied to the Three-Level Voltage Inverter

⎯Advances in power electronics technology allowed the wide investigation of multilevel converters that provide high safety voltages with less harmonic components compared to the two-level structures. Employed for converter's gating signals generation, the space-vector pulse width modulation (SVPWM) strategy reduces the switching losses by limiting the switching to the two thirds of the pulse du...

متن کامل

Lessening of power loss in voltage/current source inverter by using Space Vector Pulse Width Modulation (SVPWM) Technique

The main objective of this paper is a space vector pulse width amplitude modulation (SVPWAM) method for a buck–boost voltage/current source inverter. For a voltage source inverter, the switching loss is reduced by 87%, compared to a conventional sinusoidal pulse width modulation (SPWM) method. For a current source inverter, the switching loss is reduced by 60%. In both cases, the power density ...

متن کامل

Simulation Analysis of SVPWM Inverter Fed Induction Motor Drives

In this paper represent the simulation analysis of space vector pulse width modulated(SVPWM) inverter fed Induction motor drives. The main objective of this paper is analysis of Induction motor with SVPWM fed inverter and harmonic analysis of voltages & current. for control of IM number of Pulse width modulation (PWM) schemes are used to for variable voltage and frequency supply. The most commo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015